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The Color Glass Condensate 

Larry McLerran 
Nuclear Theory Group, Brookhaven National Laboratory, Upton, NY 11793 

The Color Glass Condensate is a state of high density gluonic matter which controls 
the high energy limit of hadronic interactions. Its properties are important for the initial 
conditions for matter produced at RHIC. 

1. Introduction 

It is a real delight to be back in Bielefeld 20 years after the historic first meeting on the 
properties of Satistical QCD organized by Helmut Satz. In this time? we have seen the 
theoretical ideas first discussed at this meeting tested in the experiments at CERN and 
at RHIC. The RHIC machine itself would almost certainly not exist had it not been for 
the intellectual excitement generated at the Bielefeld meeting. 

On a personal note, I met a large fraction of the people with whom I have collaborated ill 
the last twenty years, and many more with whom I have established life long friendships. 
The meeting strongly influenced the direction of my research throughout my cxrecr. I 
believe this is true for many of the other participants. 

During this time, Helmut has built a very strong group here, and seeded the develop- 
ment of groups around the world. He has also been very influential in the development, of 
the experimental programs at CERN, the AGS, RHIC and the future program at LHC. 

The topic I discuss will be perhaps a little off to the side from the discussion of the 
quark gluon plasma and how it may appear in heavy ion collisions. It is more about 
the early stages of such collisions and the wavefunctions of the ultrarelativistic nuclei 
themselves. We shall see that to describe these wavefunct,ions, we shall introduce a form 
of matter, and this matter has properties similar to those of a quark-gluon plasma, but 
in some fundamental ways is different. 

Let me begin with some obvious truisms: QCD is the correct theory of hadronic physics. 
It has been tested in various experiments. For high energy short distance phenomena. 
perturbative QCD computations successfully confront experiment. In lattice Monte-Carlo 
computations, one gets a successful semi-quantitative description of hadronic spec.tra, and 
perhaps in the not too distant future one will obtain precise quantitative agreement. 

At. present, however, all analytic computations and all precise QCD tests are limited to a 
small class of problems which correspond to short dist,ance physics, or t.o semi-cluantiti~t.ive 
comparisons with the results of lat,t.ice gauge theory numerical cornputat,ions. For the sllort. 
distance phenomena, there is some charact.eristic energy transfer scale E, and one uses 
asymptotic freedom, 
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Figure 1. Hadron-hadron scattering to produce a pair of jets. 

as E --+ 00 For example, in Fig. 1, two hadrons collide to make a pair of jets. If the 
transverse momenta of the jets is large, the strong coupling strength which controls this 
production is evaluated at the pT of the jet. If pT >> hick, then the coupling is weak 
and this process can be computed in perturbation theory. QCD has also been extensively 
tested in deep inelastic scattering. In Fig. 2, an electron exchanges a virtual photon with 
a hadronic target. If the virtual photon momentum transfer Q is large, then one can use 
weak coupling methods. 

One question which we might ask is whether there are non-perturbative “simple phe- 
nomena” which arise from QCD which are worthy of further effort. The questions I would 
ask before I would become interested in understanding such phenomena are 

l Is the phenomenon simple in structure? 

l Is the phenomena pervasive? 

0 Is it reasonably plausible that one can understand the phenomena from first princi- 
ples, and compute how it would appear in nature? 

I will argue that gross or @@al processes in QCD, which by their very nature are 
pervasive, appear to follow simple patterns. The main content of this first lecture is to 
show some of these processes, and pose some simple questions about their nature which 
we do not yet understand. 

My goal is to convince you that much of these average phenomena of strong interac- 
tions at extremely high energies is controlled by a new form of hadronic matt,er, a dense 
condensate of gluons. This is called t.he Color Glass Condensate since 

l Color: The gluons are colored. 

l Glass: We shall see that the fields associated wit011 the glass evolve very slowly 
relative to natural time scales, and are disordered. This is like a glass which is 
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Figure 2. Deep inelastic scattering of an electron on a hadron. 

disordered and is a liquid on long time scales but seems to be a solid on short time 
scales. 

l Condensate: There is a very high density of massless gluons. These gluons can be 
packed until their phase space density is so high that interactions prevent more gluon 
occupation. This forces at increasingly high density the gluons to occupy higher 
momenta, and the coupling becomes weak. The density saturates at Q7N/d2pTd2rT N 
l/a, >> 1, and is a condensate. 

In these lectures, I will try to explain why the above is very plausible. 

2. Total Cross Sections at Asymptotic Energy 

Computing total cross sections as E + 00 is one of the great. urlsolved problems of 
QCD. Unlike for processes which are computed in perturbation t,heory, it is not required 
that a.ny energy transfer become large as the total collision energy E -+ 00. Computing 
a total cross section for hadronic scattering therefore appears to be intrinsically non- 
perturbative. In the 60’s and early 70’s, Regge theory was extensively developed in an 
attempt to understand the total cross section. The results of this analysis were to my 
mind inconclusive, and certainly can not be claimed to be a first, principles understanding 
from &CD. 

The total cross section for pp and pp collisions is shown in Fig. 3. Typically, it. is 
assumed that the total cross section grows as Zn2E as E --+ cc. This is the so called 
Froisart bound which corresponds to the maximal growth allowctl by unit.arity of the 
S matrix. Is this correct’? Is the coefficient of Zn2E universal for all hadronic precesses? 
Why is the unitaritl- limit saturated‘? Can we understar1d tlif: total cross section from first 
principles in QCD’! Is it. understandable in weakly ~~~upletl QCD. or is it. i\n int,rinsicall!- 
nc)n-perturbati\.(~ I)lir~liorlioriol1? 
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Figure 3. The cross sections for pp and pp scattering. 
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Figure 4. The total multiplicity in pp and pp collisions. 

3. How Are Particles Produced in High Energy Collisions? 

In Fig. 4 , I plot the multiplicity of produced particles in pp and in pp collisions. The 
last, six points correspond to the pp collisions. The three upper points are the multiplicity 
in pp collisions, and the bottom three have the mutliplicity at zero energy subtracted. The 
remaining points correspond to pp. Notice that the pp points and those for ~1% with zero 
energy multiplicity subtracted fall on the same curve. The implication is that whatever is 
causing the increase in multiplicity in these collisions may be from the same mechanism. 
Can we compute N(E), the total multiplicity of produced particles as a function of energy‘? 

4. Some Useful Variables 

At this point it is useful to develop some mathematical tools. I will introduce kinematic 
va.riables: light cone coordinates. Let, t.he light cone longitudinal mon1ent.a. be 

Note that the invariant dot product 

and that 
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Figure 5. A hadron-hadron collision. The produced particles are shown as red circles. 

This equation defines the transverse mass mT. (Please note that my metric is the negative 
of that conventionally used in particle physics.) 

Consider a collision in the center of mass frame as shown in Fig. 5. In this figure, we 
have assumed that the colliding particles are large compared to the size of the produced 
particles. This is true for nuclei, or if the typical transverse momenta of the produced 
particles is large compared to A,,,, since the corresponding size will be much smaller 
than a Fermi. We have also assumed that the colliding particles have an energy which is 
large enough so that they pass through one another and produce mesons in their wake. 
This is known to happen experimentally: the particles which carry the quantum numbers 
of the colliding particles typically lose only some finite fraction of their momenta in the 
collision. 

The right moving particle which initiates the collision shown in Fig. 5 has p: - fi 1 p, 1 
and pi - &rn$/ 1 p, I. For th e colliding particles mT = mprojectile, that is because the 
transverse momentum is zero, the transverse mass equals the particle mass. For pa.rticle 
2, we have p$ = p; and p; = p:. 

If we define the Feynman x of a. produced pion as 

x = p,‘/p; (5) 

then 0 5 x 5 1. (This definition agrees with Feynman’s original one if the energy of 
a particle in the center of mass frame is large and the momentum is positive. We will 
use this definition as a generalization of the original one of Feynman since it is invariant 
under longitudinal Lorentz boosts.) The rapidity of a pion is defined to be 

(6) 
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Figure 6. The rapidity distribution of particles produced in a hadronic collision. 

For pions, the transverse mass includes the transverse momentum of the pion. 
The pion rapidity is always in the range -~CM 5 y 5 yCM where ychf = Zn(p+/mprojectile) 

All the pions are produced in a distribution of rapidities within this range. 
A distribution of produced particles in a hadronic collision is shown in Fig. 6. The 

leading particles are shown in blue and are clustered around the projectile and target 
rapidities. For example, in a heavy ion collision, this is where the nucleons would be. In 
red, the distribution of produced mesons is shown. 

These definitions are useful, among other reasons, because of their simple properties 
under longitudinal Lorentz boosts: p* + clip* where K is a constant. Under boosts, the 
rapidity just changes by a constant. 

The distribution of mesons, largely pions, shown in Fig. 4. are conveniently thought. 
about in the center of mass frame. IIere we imagine the positive rapidity mesons as 
somehow related to the right moving particle and the negative rapidity particles as related 
to the left moving particles. We define x = p+/p&ojectile and z’ = p-/pprojectile and use :r 
for positive rapidity pions and Z’ for negative rapidity pions. 

Several theoretica, issues arise in multiparticle production. Can WC compute dN/dy? or 
even dN/dy at y = O? How does the average transverse rnomentum of produced particles 
< pT > behave with energy‘ ? What is the ratio of produced strange/nonstrange mesons, 
and corresponding ratios of charm, top, bot,tom etc at y = 0 as the center of rnass energy 
qproaches infinity‘? 

Does multiparticle production as E -+ oo at y = 0 become simple, understandable and 
computable? 

There is a remarkabk feature of rapidity distributions of procluccd 
haclrons, which we shall refer to as Feynman scaling. If WC plot rapidity distributions 
of produced hadrons at different energies, then as function of the distance from the frag- 
mentation region, the rapidity distributions are to a good ar.‘I.‘roxirrlat.ion independent of 
energy. This is illustrated in Fig. 7. This means t:hat as we go to ltigher and higher 
(3icrgies. tlict mw physics is ~3jSOCii~t~d with t.he adclir ional degrec.ts of frc?c:c.lorn at, sn~all 
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Figure 7. Feynman scaling of rapidity distributions. The two different colors correspond 
to rapidity distributions at different energies. 

rapidities in the center of mass frame (small-x degrees of freedom). The large x degrees 
of freedom do not change much. This suggests that there may be some sort of renormal- 
ization .group description in rapidity where the degrees of freedom at larger x are held 
fixed as we go to smaller values of x. We shall see that in fact these large x degrees of 
freedom act as sources for the small x degrees of freedom, and the renormalization group 
is generated by integrating out low x degrees of freedom to generate these sources. 

5. Deep Inelastic Scattering 

In Fig. 2, deep inelastic scattering is shown. Here an electron emits a virtual photon 
which scatters from a quark in a hadron. The momentum and energy transfer of the 
electron is measured, and the results of the break up are not. In these lectures, I do nor 
have sufficient time to develop the theory of deep inelastic scattering. Suffice it to say, that 
this measurement is sufficient at large momenta transfer Q2 to measure the distributions 
of quarks in a hadron. 

To describe the quark distributions, it is convenient to work in a reference frame where 
the hadron has a large longitudinal momentum pzadrOn.. The corresponding light cone 
momentum of the constituent is p~~nstituent. We define x = p~~nstituent/p~~dron. This s 
variable is equal to the Bjorken x variable, which can be defined in a frame independent 
wag. In this frame independent definition, x = Q2/2p 9 Q where p is the momentum of t.he 
hadronic target and Q is t,he momentum of the virtual photon. The cross section which 
one estracts in deep inelastic scattering can be related to the distributions of quarks inside 
a hadron, dN/dx. 

It is useful to think about the distributions as a function of rapidity. We define this for 
deep inelastic scattering as 

(T! 
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Figfire 8. The rapidity distribution of gluons inside of a hadron. 

and the invariant rapidity distribution as 

dN/dy = xdN/dx (8) 

In Fig. 8, a typical dN/dy distribution for constituent gluons of a hadron is shown. 
This plot is similar to the rapidity distribution of produced particles in deep inelastic 
scattering. The main difference is that we have only half of the plot,, corresponding to the 
left moving hadron in a collision in the center of mass frame. 

We shall later argue that there is in fact a relationship between the structure funct,ions as 
measured in deep inelastic scattering and the rapidity distributions for part,icle production. 
We will argue that the gluon distribution function is in fact proportional to the pion 
rapidity distribution. 

The small x problem is that in experiments at Hera, the rapidity dist,rihution function 
for quarks grows as the rapidity difference between the quark and t,he hadron grows. This 
growth appears to be more rapid than simply 1 yprOj - y 1 or (yproj - !I)~, and various 
theoretical models based on the original considerations of Lipatov and collclagues suggest 
it may grow as an exponential in 1 ‘y,,oj - y 1 .[I] (Consistency of the BFKL approach wit11 
the more established DC1TL:k.P evolution equations remains an out.standing theoretical 
problem.[2]) If the rapidity distribution grew at most as y2, then there would be no small 
s problem. We shall try to esplain the reasons for this later in this lectSure. 

In Fig. 9, the Zeus data for the gluon structure function is shown.[3] I have plotted 
the structure function for Q’ = 5 GeT -2. 20 GeV2 and 200 Gel’“. TEw st.ru(:ture function 
depends upon the resolution of the probe, that is Q ‘. Note the rise of X:(/(X) at. small s. 
this is the small s problem. If one had plot.ted the total multiplicity of’ produced particsles 
in pp and j3j7 c~ollisions on the same plot, one would have found rouj;‘h agrf~cirlent in tllc! 
shape of the CII~\~~S. Here I would use ii = bof~(E,,,,/l Gc\ vi for tllit I,ic,rl I)ro~11~(*t,icnl data. 
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Figure 9. The Zeus data for the gluon structure functions. 

This is approximately the maximal value of rapidity’difference between centrally produced 
pions and the projectile rapidity. The total multiplicity would be resealed so that at small 
x, it matches the gluon structure functions. This demonstrates the qualitative similarit? 
between the gluon structure function and the total multiplicity. 

Why is the small x rise in the gluon distribution a problem? Consider Fig. 10, where 
we view hadron head on.[4]-[5] Th e constituents are the valence quarks, gluons and sea 
quarks shown as colored circles. As we add more and more constituents, the hadron 
becomes more and more crowded. If we were to try to measure these constituents with 
say an elementary photon probe, as we do in deep inelastic scattering, we might expect 
that the hadron would become so crowded that we could not ignore the shadowing effects 
of constituents as we make the measurement. (Shadowing means that some of the partons 
are obscured by virtue of having another parton in front of them. For hard spheres, for 
example, this would result in a decrease of the scattering cross section relative t.o what is 
expected from incoherent independent scattering.) 

In fact, in deep inelastic scattering, we are measuring the cross section for a virtual 
photon y* and a hadron, gy*hadron. Making x smaller corresponds to increasing the energ! 
of the interaction (at fixed Q”). An exponential growth in the rapidity corresponds to 
power law growth in l/x, which in turn implies power law growth with energy. This 
growth, if it continues forever, violates unitarity. The Froissart bound will allow at most 
Zn2(1/z). (The Froissart bound is a limit on how rapidly a total cross section cau rise. It 
follows from the unitarity of the scattering matrix.) 

We shall later argue that in fact the distribution functions at fixecl Q” do in fact saturate 
and cea.se growing so rapidly at high energy. The total number of gluons however demands 
a resolution scale, and we will see that the natural intrinsic scale is growing at, sniallel 
values of x, so that eff’ectively, the total number of gluons within this intrinsic scale is 
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Figure 10. Saturation of gluons in a hadron. ,4 view of a hadron head on as x decreases. 

always increasing. The quantity 

A2= l dN __- 
,rrR2 dy 

defines this intrinsic scale. Here TR” is the cross section for hadronic scattering from the 
hadron. For a nucleus, this is well defined. For a hadron, this is less certain, but certainly 
if the wavelengths of probes are small compared to R7 this should be well defined. If 

A2 >> A&, (10) 

as the Hera data suggests, then we are dealing with weakly coupled QCD since n.~(~\) << 
1. 

Even though QCD may be weakly coupled at small x, that does not mean the physics 
is perturbative. There are many examples of nonperturbative physics at weak coupling. 
An example is instantons in clectroweak theory, which lead to the violation of ba.ryon 
number. another example is the at,omic physics of highly charged nuclei. The elect,run 
propagates in the background of a strong nuclear C~oulomb field, but, on t,he other hand. 
the theory is weakly coupled and there is a systematic weak coupling expansion which 
allows for computation of the properties of high Z (Z is tho charge of the nucleus) atoms. 

6lre call this assort.ment of glums a Color Glass Contlensate. The I~IW f~llmvs from the 
fact. t.liat the gliions are color(~d, ant1 w‘c bar-c sect that. they ar(’ very tl(!nsft. For rnassl(%i 
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particles we expect that the high density limit will be a Bose condensate. The phase 
space density will be limited by repulsive gluon interactions, and be of order l/a, >> 1. 
The glass nature follows because these fields are produced by partons at higher rapidity, 
and in the center of mass frame, they are Lorentz time dilated. Therefore the induced ; 
fields at smaller rapidity evolve slowly compared to natural time scales. These fields are 
also disordered. These two properties are similar to that of a glass which is a disrodered 
material which is a liquid on long time scales and a solid on short ones. 

If the theory is local in rapidity, then the only parameter which can determine the 
physics at that rapidity is A 2. Locality in rapidity means that there are not long range 
correlations in the hadronic wavefunction as a function of rapidity. In pion production, it is 
known that except for overall global conserved quantities such as energy and total charge, 
such correlations are of short range. Note that if only A2 determines the physics, then 
in an approximately scale invariant theory such as &CD, a typical transverse momentum 
of a constituent will also be of order A 2. If A2 >> 1/R2, where R is the radius of the 
hadron, then the finite size of the hadron becomes irrelevant. Therefore at small enough 
x, all hadrons become the same. The physics should only be controlled by A2. 

There should therefore be some equivalence between nuclei and say protons. When 
their A2 values are the same, their physics should be the same. We can take an empirical 
parameterization of the gluon structure functions as 

1 dN Ali3 --N- 
rR2 dy x6 

where 6 - .2 - .3. This suggests that there should be the following correspondences: 

l RHIC with nuclei - Hera with protons 

l LHC with nuclei - Hera with nuclei 

Estimates of the parameter A for nuclei at RHIC energies give - 1 - 2 Gev, and at 
LHC 2 - 3 Gev. 

Since the physics of high gluon density is weak coupling we have the hope that we might 
be able to do a first principle calculation bf 

l the gluon distribution function 

l the quark and heavy quark distribution functions 

l the intrinsic PT distributions quarks and gluons 

We can also suggest a simple escape from unitarity arguments which suggest that the 
gluon distribution function must not grow at arbitrarily small x. The point is that at 
smaller x, we have larger A and correspondingly larger PT. A typical parton added to 
t.he hadron has a size of order l/pT. Therefore although we are increasing the number 
of gluons, we do it by adding in more gluons of smaller and smaller size. A probe of 
size resolution AX 2 l/p* at fixed Q will not, see partons smaller than this resolution 
size. They therefore do not cont,ribute to the fixed Q2 cross section, and there is no 
contradiction with unitarity. 
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Figure 11. A space-time figure for ultrarelativistic heavy ion collisions. 

6. Heavy Ion Collisions 

In Fig. 11, the standard lightcone cartoon of heavy ion collisions is shown.[6] To 
understand the figure, imagine we have two Lorentz contracted nuclei approiching one 
another at the speed of light. Since they are well localized, they can be thought of as 
sitting at x* = 0, that is along the light cone, for t < 0. At Z* = 0, the nuclei collide. 
To ‘analyze this problem for t 2 0, it is convenient to introduce a time variable which is 
Lorentz covariant under longitudinal 

and a space-time rapidity variable 

For free streaming particles 

boosts 

we see that the space-t#imp rapidity equals the momentum space rapidity 

11 = Y 

(13) 

(15) 

If we have distributions of particles which are slowly varying in rapidity, it should be 
a good approsimation too t.ake the dist,ributions to be rapidity invariant.. This should 1.)~ 
valicl at very high energies in the central region. By the ~orrc?sI)c:)rlc:l~Il~.~(~ ~~)et.wc?en s~mcti- 

tilne and moinent,llni spi\ct’ rapidit.y, it. is plausible t.hFtreforo to ilssi1In~ that. c.list.ri~)i.it.iorls 
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are independent of 7. Therefore distributions are the same on lines of constant 7, which 
is as shown in Fig. 11. At z = 0, r = t, so that T is a longitudinally Lore.ntz invariant 
time variable. 

We expect that at very late times, we have a free streaming gas of hadrons. These are 
the hadrons which eventually arrive at our detector. At some earlier time, these particles 
decouple from a dense gas of strongly interacting hadrons. As we proceed earlier in time, 
at some time there is a transition between a gas of hadrons and a plasma of quarks and 
gluons. This may be through a first order phase transition where the system might exist 
in a mixed phase for some length of time, or perhaps there is a continuous change in the 
properties of the system 

At some earlier‘ time, the quarks and gluons of the quark-gluon plasma are formed. 
This is at RHIC energies, a time of the order of a Fermi, perhaps as-small as .1 Fermi. 
As they form, the particles scatter from one another, and this can be described using the 
methods of transport theory. At some later time they have thermalized, and the system 
can be approximately described using the methods of perfect fluid hydrodynamics. 

In the time between that for which the quarks and gluons have been formed and r = 0, 
the particles are being formed. This is where the initial conditions for a hydrodynamic 
description are made. 

In various levels of sophistication, one can compute the properties of matter made in 
heavy ion collisions at times later than the formation time. The problems are understood 
in principle for r 2 7-ff,,,,tion if perhaps not in fact. Very little is known about the initial 
conditions. 

In principal, understanding the initial conditions should be the simplest part of the 
problem. At the initial time, the degrees of freedom are most energetic and therefore one 
has the best chance to understand them using weak coupling methods in &CD. 

There are two separate classes of problems one has to understand for the initial condi- 
tions. First the two nuclei which are colliding are in single quantum mechanical states. 
Therefore for some early time, the degrees of freedom must be quantum mechanical. This 
means that 

Therefore classical transport theory cannot describe the particle down to r = 0 since 
classical transport theory assumes we know a distribution function f(@‘, rC, t), which is a 
simultaneous function of momenta and coordinates. This can also be understood as a 
consequence of entropy. An initial quantum state has zero entropy. Once one describes 
things by classical distribution functions, entropy has been produced. Where did it come 
from? 

Another problem which must be understood is classical charge coherence. rlt very earlJ 
time, we have a tremendously large number of particles packed into a longitudinal size 
scale of less than a fermi. This is due to the Lorentz contraction of the nuclei. We knon 

that the particles cannot interact incoherently. For example, if we measure the field due 
to two opposite charge at a distance scale T large compared to their separation, we knon 
the field falls as 1/r2, not l/r. On the other hand, in cascade theory, interactions a.re 
taken into account. by cross sections which involve matrix elements squared. There is no 
room for classical cha.rge colierencp. 



15 

There are a whole variety of problems one can address in heavy ion collisions such 

l What is the equation of state of strongly interacting matter? 

l Is there a first order QCD phase transition? 

These issues and others would take us beyond the scope of these lectures. The issues 
which I would like to address are related to the determination of the initial conditions, a 
problem which can hopefully be addressed using weak coupling methods in &CD. 

7. Universality 

There are two separate formulations of universality which are important in understand- 
ing small x physics. 

The first is a weak universality. This is the statement that physics should only depend 
upon the variable[7] 

1 dN AZ=-.-- 
nR2 dy 

As discussed above, this universality 
consequences which can be directly tested. 

has immediate experimental 

The second is a strong universality which is meant in a statistical mechanical sense. 
At first sight it appears to be a formal idea with little relation to experiment. If it is 
however true, its consequences are very powerful and far reaching. What we shall mean 
by strong universality is that the effective action which describes small x distribution 
function is critical and at a fixed point of some renormalization group. This means that 
the behavior of correlation functions is given by universal critical exponents. and these 
universal critical exponents depend only on general properties of the theory such as the 
symmetries and dimensionality. 

Since the correlation functions determine the physics, this statement, says that the 
physics is not determined by the details of the interactions, only by very general properties 
of the underlying theory! 
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